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For quantum computation… 

•  want:   isolation + control 

•  have:   decoherence + imprecision 

•  need:  error correction 

•  how:    one qubit encoded in many 

error correction 

logical qubit physical qubits 



•  extra degrees of freedom detect errors 

•  check operators fix the code subspace 

•  measuring them gives the error syndrome 

•  to correct, guess error from syndrome 

error correction 

logical qubit physical qubits 



•  correction is possible if errors are not arbitrary 

•  local errors are more likely 

•  phenomenology: local stochastic noise 

locality 

more likely less likely 

P(error affects qubits i1, i2, …, in)   ≤  εn  



•  compute with encoded qubits 

•  errors pile up, but error correction flushes them 
away (up to a point) 

•  logical operations should preserve locality! 

fault-tolerant QC 
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•  act separately on physical subsystems 

•  do not spread errors 

•  downside: never universal 
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•  finite depth circuit 

•  limited spread of errors 

•  in some contexts, limited power 

local operations 
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•  finite depth circuit 

•  limited spread of errors 

•  in some contexts, limited power 
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quantum-local operations 

t C
Cnoiseless 

classical 
comp. 

•  finite depth circuit + global classical comp. 

•  universal operations + error correction no limits! 



•  finite depth circuit + global classical comp. 

•  universal operations + error correction 

quantum-local operations 
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•  physical qubits on a lattice 

•  local check operators 

•  ‘local’ operators cannot harm logical qubits 

topological codes 
Kitaev ‘97 



topological codes
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topological order 

•  gapped (local) quantum Hamiltonian 

•  locally undistinguishable ground states 

•  robust against deformations 

Single-shot fault-tolerant quantum error correction
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Information in a subsystem B of a subspace C = A⌦B
of H. Projector P , channel C(⇢) := P⇢P . A channel
E 2 B(H) is correctable if there exists a recovery channel
R with

R � E � C = F � C. (1)

for some F 2 B(C) with trivial action in B.
In practice class of channels E

n
✏ ✓ B(H), implic-

itly dependent on n, ✏ parametrizes a restriction on
the noise level and n indexes the Hilbert space, typi-
cally Hn := H⌦n

0

for some H
0

. We choose some class
Nµ(A,B) ✓ B(A⌦B) with µ parametrizing the amount
of noise allowed on B. Goal: find encodings Ci = Ai⌦B
in Hn, with n a function of i, so that for a given ✏ there
is a function µ of i such that limi!1 µ = 0 and for any
i and E 2 E✏ there is F 2 Nµ(Ai, B) with (1). If this is
true for any ✏ < ✏

0

then we say that the code family has
threshold ✏

0

.
Class of noisy recoveries R⌘ ✓ B(Hn), with ⌘ quanti-

fying the noise level, and for each i a class E✏,µ ✓ B(Hn)
that encompasses both E✏ and Nµ(Ai, B). ✏ quantifies
generic noise, µ ’logical’ noise. Then as in (1) but with
R 2 R⌘, E 2 E✏,µ and F 2 E✏̄,µ̄, in such a way that
lim⌘!0

✏̄ = 0 and for (✏, ⌘) within a certain neighborhood
of (0, 0) we have limi!1 µ̄ = µ.
Stabilizer codes. Given a system Hn

2

of n quits, sub-
space C defined by a stabilizer S, a subgroup of the
Pauli group P of operators with �1 62 S. Namely,
P =

Q
s2S(1 + s)/2. The decomposition C = A ⌦ B

is obtained by introducing another subgroup of the Pauli
group, the gauge group G, such that its center is S, up to



self-correction 

•  for D ≥ 4 excitations can be extended objects 
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•  geometrically local, finite depth circuit 

•  finite spatial spread of errors 

local operations 



Dimensional restrictions 
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P =

Q
s2S(1 + s)/2. The decomposition C = A ⌦ B

is obtained by introducing another subgroup of the Pauli
group, the gauge group G, such that its center is S, up to
phases. A is then the subsystem where G acts nontrivially
and indeed generates the full algebra of operators, and
B the subsystem where it acts trivially. We can recover
the full algebra on B from the group of ‘bare’ logical op-
erators Z(G), the centralizer of G. We choose a suitable
set of representatives L of Z(G)/S with 1 2 L.
We will deal with channels in B(Hn
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P
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We denote such a channel as {Ki}, thus ignoring the
gauge part, which is consistent with channel composition:
{Ki} � {Lj} = {KiLj}i,j .
Error correction. Ideal error correction proceeds by
first measuring the stabilizer elements, thus projecting
the system with Pf :=

P
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S ! {1,�1} is a group morphism known as the error
syndrome. If the error E 2 P occurs, the syndrome is
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
D

:=
� 1 0

0 e

2⇡i/2D

�

. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-

Gauge Color Codes
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(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
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A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
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involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
D

:=
� 1 0

0 e

2⇡i/2D

�

. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].

P2 P3 P4
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
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� 1 0

0 e

2⇡i/2D

�

. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
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. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].
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FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent
of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-
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Color codes are topological stabilizer codes with unusual transversality properties. Here I show
that their group of transversal gates only depends on the spatial dimension, not the local geometry. I
also introduce a generalized, gauge version of color codes. In 3D they allow the e↵ectively transversal
implementation of a universal set of gates by gauge fixing, while error-dectecting measurements
involve only 4 or 6 qubits.

In fault-tolerant quantum computation, quantum in-
formation is protected from noise by encoding it in some-
what non-local degrees of freedom, thus distributing it
among many smaller subsystems, typically qubits. This
makes sense under the assumption that errors mostly af-
fect each subsystem separately. The implementation of
gates, consequently, must be as local as possible. This
is achieved with transversal gates, i.e. unitary operators
that transform encoded states by acting separately on
each subsystem. Transversal gates are as local as one
could wish, but unfortunately no code admits a univer-
sal transversal set of gates, i.e. one that can approximate
arbitrary gates [? ]. This forces alternate routes, such as
the distillation of noisy magic states [? ] or the use of
e↵ectively transversal operations [? ], i.e. such that the
only non-transversal operations are classical.

Topological quantum error correcting codes [? ]
emphasize locality further by considering the spatial
location of the subsystems. They come in families
parametrized with a lattice size, for a fixed spatial dimen-
sion. Their defining features are (i) that the measure-
ments needed to recover information about errors only
involve a few neighbouring subsystems and (ii) that no
encoded information can be recovered without access to
a number of subsystems comparable to the system size.

Color codes are a class of topological codes with re-
markable transversality properties. The original color
codes [? ] were defined for D = 2 spatial dimen-
sions, with the aim of making the Cli↵ord group of gates
transversal. But color codes can also be defined for any
D > 2 on lattices called D-colexes [? ]. It is known [? ?

] that, assuming that colexes fulfilling certain local con-
ditions can be constructed, then families of color codes
exist on dimension D that admit the transversal imple-
mentation of the gates CNot and

R
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�

. Remarkably, the simplest 2D color has recently been
implemented experimentally, together with its transver-
sal gates [? ].

A first di�culty of color codes is that it is not obvious
that D-colexes with the required properties can be con-
structed for any D. A first aim of this work is to show
that actually such local constraints are irrelevant: the
transversality properties of a color code are independent

FIG. 1: The first three instances of an infinite family of 3D
color codes. Qubits are attached to all 3-simplices, to 2-
simplices on the external faces, to 1-simplices along the edges
of these faces and to the 0-simplices where 3 such edges meet.
Although 2-simplices are labeled with 3 colors, here they dis-
play the complementary color in the set of 4 colors.

of the local geometry of the colex. This is interesting
from a theoretical point of view because D-colexes can
be easily built for any dimension [? ]: it shows that topo-
logical codes exist on dimension D that implement the
gate R

D

(more on this below). From a practical perspec-
tive this result is also useful for lower dimensions: with
less constraints more e�cient codes are possible. In 2D,
for example, there exist families of color codes that only
require measurements involving 4 or 6 qubits at a time
for error-correction. With the constraints enforced, the
number of qubits goes up to 8 [? ].
3D color codes are particularly interesting because the

Hadamard gate su�ces to complete a universal gate set,
and e↵ectively transversal methods to implement it are
known [? ]. From a practical perspective, however, 3D
color codes pose two di�culties. The first one is that
the measurements for error-correction can involve each
dozens of qubits; this is a problem because, generally
speaking, operations involving more qubits tend to be
more unreliable and lengthy. The second problem is that
to perform each Hadamard gate an extra encoded qubit
needs to be initialized and measured, thus increasing the
resources needed for computation.
Both problems are resolved here by introducing a gen-

eralized form of color codes, gauge color codes [? ]. Just
as in 2D, it is possible to construct families of 3D gauge
color codes where the measurements for error correc-
tion only involve 4 or 6 qubits, see Fig. ??. Moreover,
using the gauge fixing technique [? ], a universal set
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FIG. 2: (Left) A triangular 2-colex. Plaquettes are colored
with the complementary color, i.e. rg-plaquettes are colored
blue. (Right) A tetrahedral 3-colex. Cells are colored with the
complementary color, i.e. rgb-plaquettes are colored yellow.
Every facet is a triangular 2-colex. The rgb-facet has vertices
marked in black: these are the outer vertices, and the rest are
the inner vertices.

where Z(A) denotes the centralizer of A in the Pauli
group. The operators in the set Z(G) are (bare) logical
(Pauli) operators: they transform encoded states while
preserving the encoding. Their logical e↵ect is the same
if they are equivalent up to stabilizers, and thus it is
convenient to choose a minimal set L of representatives.
Gauge fixing. This procedure [12] allows to switch back
and forth between two codes S,G and S 0,G0 if [10] they
share a representative set L of logical operators and

S ✓ S 0, (2)

or, equivalently (up to a choice of signs for S and S 0)

G0 ✓ G. (3)

Any encoded state of S 0 is also an encoded state for S.
Transforming an encoded state of S into an encoded state
of S 0 is called gauge fixing. Ideally it amounts to measure
a set of generators of S 0 (or just of S 0/S) and apply a
suitable element of G (in fact of G/G0).
Splitting. Gauge fixing can split a code. Consider some
codes with gauge groups Gi defined on disjoint sets of ni

qubits each and with logical operator representatives Li.
Let G be a code on the n =

P
i ni qubits, with logical

operators L and such that

L =
Y

i

Li, Gi ✓ G. (4)

According to (3) the code G can be gauge fixed to the
code G0 obtained by putting together the Gi. In this case
gauge fixing amounts to split G into pieces Gi, each keep-
ing some of the logical qubits. And conversely, putting
together such pieces provides an encoded state of G.
Colexes. 2D color codes [6] are defined on 2-colexes.
These are 2D trivalent lattices with 3-colored edges in
which plaquettes (2-cells) have edges of two colors. The 2-
colexes considered here are triangular. In particular, each
side of the triangle has edges in di↵erent combinations of
two colors, see Fig. 2.

3D color codes [5] are defined on 3-colexes. These are
3D tetravalent lattices with 4-colored edges, in which pla-
quettes have edges of two colors and cells (3-cells) have
edges of three colors. The 3-colexes considered here as a
starting point are tetrahedral. In particular, each facet
of the tetrahedron has edges in di↵erent combinations of
three colors, see Fig. 2. Detailed constructions of trian-
gular 2-colexes and tetrahedral 3-colexes are given in [10],
and more general definitions in [9].
A key feature for the results below is that each triangu-

lar facet of a tetrahedral 3-colex is a triangular 2-colex.
One of these faces will be termed the outer (2-)colex.
The inner (3-)colex is composed of those vertices, edges,
and cells not in contact with the outer colex. Those cells
with both inner and outer vertices will be termed inter-

face cells, and similarly for plaquettes.
Color codes. 2D color codes and 3D gauge color
codes [10] are self-dual CSS topological stabilizer codes,
i.e. the generators of the stabilizer and gauge group are
products either exclusively of bit-flip X operators or ex-
clusively of phase-flip Z operators, with the same geom-
etry for X- and Z-type generators. Therefore, the code
is completely defined by the support of the generators.
Both in 2D and 3D there is one physical qubit per ver-

tex of the colex. Let the support of an edge, plaquette or
cell operator be the set of vertices of a given edge, plaque-
tte or cell, respectively. A first crucial fact is that both in
2D and 3D the gauge generators are plaquette operators.
The respective generator sets will be denoted G2 an G3.
The stabilizers in general depend on the geometry of the
code. For 2D triangular codes the generators are again
plaquette operators, denoted S2, and for the 3D tetra-
hedal codes the generators are cell operators, denoted
S3. In both cases the support of logical operators can be
chosen to consist of all qubits. A second crucial feature,
however, is that for 3D tetrahedral codes the logical op-
erators can be chosen to have as support the set of all
outer qubits [9].

A 3D gauge color code can also be defined for the inner
colex. It encodes no logical qubits. Its gauge generators
Gin are plaquette operators (by definition), and its stabi-
lizer generators Sin include all the cell operators together
with, for each cell c in the interface, the restriction of the
corresponding cell operator sc to the inner qubits.
Dimensional collapse. As observed above, (i) the inner
code has no logical qubits, (ii) the logical operators of the
outer 2D code are also logical operators of the 3D code
and (iii)

G2 ✓ G3, Gin ✓ G3. (5)

It follows from (4) that the 3D code can be gauge fixed
to the split code

S2+ := Sin [ S2, G2+ := Gin [ S2, (6)

Moreover, due to the CSS structure (2) holds exactly, not
up to a choice of signs.
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FIG. 2: (Left) A triangular 2-colex. Plaquettes are colored
with the complementary color, i.e. rg-plaquettes are colored
blue. (Right) A tetrahedral 3-colex. Cells are colored with the
complementary color, i.e. rgb-plaquettes are colored yellow.
Every facet is a triangular 2-colex. The rgb-facet has vertices
marked in black: these are the outer vertices, and the rest are
the inner vertices.

where Z(A) denotes the centralizer of A in the Pauli
group. The operators in the set Z(G) are (bare) logical
(Pauli) operators: they transform encoded states while
preserving the encoding. Their logical e↵ect is the same
if they are equivalent up to stabilizers, and thus it is
convenient to choose a minimal set L of representatives.
Gauge fixing. This procedure [12] allows to switch back
and forth between two codes S,G and S 0,G0 if [10] they
share a representative set L of logical operators and

S ✓ S 0, (2)

or, equivalently (up to a choice of signs for S and S 0)

G0 ✓ G. (3)

Any encoded state of S 0 is also an encoded state for S.
Transforming an encoded state of S into an encoded state
of S 0 is called gauge fixing. Ideally it amounts to measure
a set of generators of S 0 (or just of S 0/S) and apply a
suitable element of G (in fact of G/G0).
Splitting. Gauge fixing can split a code. Consider some
codes with gauge groups Gi defined on disjoint sets of ni

qubits each and with logical operator representatives Li.
Let G be a code on the n =

P
i ni qubits, with logical

operators L and such that

L =
Y

i

Li, Gi ✓ G. (4)

According to (3) the code G can be gauge fixed to the
code G0 obtained by putting together the Gi. In this case
gauge fixing amounts to split G into pieces Gi, each keep-
ing some of the logical qubits. And conversely, putting
together such pieces provides an encoded state of G.
Colexes. 2D color codes [6] are defined on 2-colexes.
These are 2D trivalent lattices with 3-colored edges in
which plaquettes (2-cells) have edges of two colors. The 2-
colexes considered here are triangular. In particular, each
side of the triangle has edges in di↵erent combinations of
two colors, see Fig. 2.

3D color codes [5] are defined on 3-colexes. These are
3D tetravalent lattices with 4-colored edges, in which pla-
quettes have edges of two colors and cells (3-cells) have
edges of three colors. The 3-colexes considered here as a
starting point are tetrahedral. In particular, each facet
of the tetrahedron has edges in di↵erent combinations of
three colors, see Fig. 2. Detailed constructions of trian-
gular 2-colexes and tetrahedral 3-colexes are given in [10],
and more general definitions in [9].
A key feature for the results below is that each triangu-

lar facet of a tetrahedral 3-colex is a triangular 2-colex.
One of these faces will be termed the outer (2-)colex.
The inner (3-)colex is composed of those vertices, edges,
and cells not in contact with the outer colex. Those cells
with both inner and outer vertices will be termed inter-

face cells, and similarly for plaquettes.
Color codes. 2D color codes and 3D gauge color
codes [10] are self-dual CSS topological stabilizer codes,
i.e. the generators of the stabilizer and gauge group are
products either exclusively of bit-flip X operators or ex-
clusively of phase-flip Z operators, with the same geom-
etry for X- and Z-type generators. Therefore, the code
is completely defined by the support of the generators.
Both in 2D and 3D there is one physical qubit per ver-

tex of the colex. Let the support of an edge, plaquette or
cell operator be the set of vertices of a given edge, plaque-
tte or cell, respectively. A first crucial fact is that both in
2D and 3D the gauge generators are plaquette operators.
The respective generator sets will be denoted G2 an G3.
The stabilizers in general depend on the geometry of the
code. For 2D triangular codes the generators are again
plaquette operators, denoted S2, and for the 3D tetra-
hedal codes the generators are cell operators, denoted
S3. In both cases the support of logical operators can be
chosen to consist of all qubits. A second crucial feature,
however, is that for 3D tetrahedral codes the logical op-
erators can be chosen to have as support the set of all
outer qubits [9].

A 3D gauge color code can also be defined for the inner
colex. It encodes no logical qubits. Its gauge generators
Gin are plaquette operators (by definition), and its stabi-
lizer generators Sin include all the cell operators together
with, for each cell c in the interface, the restriction of the
corresponding cell operator sc to the inner qubits.
Dimensional collapse. As observed above, (i) the inner
code has no logical qubits, (ii) the logical operators of the
outer 2D code are also logical operators of the 3D code
and (iii)

G2 ✓ G3, Gin ✓ G3. (5)

It follows from (4) that the 3D code can be gauge fixed
to the split code

S2+ := Sin [ S2, G2+ := Gin [ S2, (6)

Moreover, due to the CSS structure (2) holds exactly, not
up to a choice of signs.
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Dimensional Jump in Quantum Error Correction
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Topological stabilizer codes with di↵erent spatial dimensions have complementary properties.
Here I show that the spatial dimension can be switched using gauge fixing. Combining 2D and 3D
gauge color codes in a 3D qubit lattice, fault-tolerant quantum computation can be achieved with
constant time overhead on the number of logical gates, up to e�cient global classical computation,
using only local quantum operations. Single-shot error correction plays a crucial role.

Quantum error correction methods [1] that emphasize
locality [2] constitute nowadays the most promising ap-
proach for practical implementation. In particular, topo-
logical stabilizer codes [3] receive a good deal of atten-
tion due to their flexibility and relative simplicity. 2D
topological stabilizer codes are potentially easiest to im-
plement, but low dimensionality constrains severely the
operations that can be performed locally [4]. 3D codes do
not su↵er from such obstructions [5], but require many
more qubits, among other drawbacks. The purpose of
this work is to bring together the best of the two worlds
by providing a bridge between them: a procedure to
switch between 2D and 3D codes.

Among 2D topological stabilizer codes 2D color
codes [6] are optimal in terms of the local implementation
of gates. Namely, all Cli↵ord gates are transversal, i.e.
act individually on the physical qubits composing the
code (or pair-wise for two-qubit logical gates). See [7]
for a recent single-qubit implementation. Unfortunately
Cli↵ord gates are not enough for universal computation,
but this is all that 2D topological stabilizer codes can
o↵er [4]. The way out is to either resort to complemen-
tary techniques that increase the amount of resources
needed [8], to consider more complicated codes [3], or to
increase the spatial dimension.

3D (gauge) color codes are 3D topological stabilizer
codes with many remarkable characteristics that, put to-
gether, enable fault-tolerant quantum computation with
quantum-local elementary operations, i.e. involving only
a finite depth local quantum circuit aided with global
classical information processing [9]. This comes at a cost:
spatial locality can only be attained in 4D when imple-
menting two-qubit logical gates. In addition, 3D color
codes require O(n3/2) qubits to get an e↵ective error rate
that with a 2D color code would required O(n) qubits.

Dimensional jumps solve these problems, at least to
a large extent. As the name suggests, in a dimensional
jump the spatial dimension of a local code is switched
in constant time, or more precisely via a quantum-local
operation, where locality refers to a 3D layout. In par-
ticular, the procedure allows to switch back and forth
fault-tolerantly between 3D and 2D color codes.

Equipped with dimensional jumps one can envision the
3D-local fault-tolerant quantum computing layout of fig-
ure 1. The starting point is a stack of 2D color codes,

FIG. 1: A 3D layout for fault-tolerant quantum computing.
Each layer of the stack is a 2D color code encoding a logical
qubit. On one extreme sits a 3D color code lattice. Most of
the stack acts as a memory where logical qubits are shu✏ed,
and computations happen in and next to the 3D structure.

analogous to the one proposed for toric codes in [2]. Each
layer encodes a single logical qubit, and all Cli↵ord gates
can be perfomed transversally. On one extreme of the
stack sits a 3D color code lattice, and the 2D color code
sitting next to it can be converted back and forth into a
3D color code. As a 2D code it can be part of the Cli↵ord
gates occurring in the stack, and as a 3D code it becomes
isolated from the other 2D codes but a non-Cli↵ord gate
can be implemented, achieving universality [5].
An advantage of the layout is that all logical qubits

but one are encoded in 2D, dramatically reducing the
resources when compared with an all-3D encoding. Also
important is that all elementary operations are quantum-
local. As a drawback, the 3D capabilities are only avail-
able in one location, and therefore parallel computation
is lost. The time overhead is still constant on the number
of logical gates, and for this it is enough to be able to per-
form swap gates in most of the stack, with computations
confined to neighbors of the 3D code. Finally, it is worth
noting that, for the 2D and 3D constructions of [10], the
required elementary operations involve at most 6 physical
qubits at a time (plus any ancillas used).
Stabilizer codes. A stabilizer subsystem code [11] on
n physical qubits is defined by two subgroups S,G of
the Pauli group of operators on n qubits. The stabilizer
group S defines the code subspace where quantum infor-
mation is encoded, and the gauge group G generates the
algebra of operators that do not disturb encoded infor-
mation. They have to satisfy

�1 62 S, S / G \ Z(G), (1)

•  fault-tolerant QC in 3D qubit lattice 

•  local quantum ops + global classical comp. 

•  constant time ops.  (disregarding efficient CC) 
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•  simplest (classical) self-correction 

•  critical temperature TC if D>1 

•  below TC         confined loops 

•  stable bit (exponential lifetime) 

Ising model 

3

this factor is stronger that entropy fluctuations and loops
are confined. This protects the classical bit because large
loops are required to flip its value.

It is possible to construct a quantum code based on
the Ising model. It will correct only bit-flip errors, but
this is enough to illustrate the role that confinement can
play in quantum error correction.

The construction is as follows. Physical qubits are
placed on the faces of a 2D square lattice, see Fig. 2.
As usual X

i

, Z
i

denote the X,Z Pauli operators on the
i-th qubit. Between any pair of adjacent faces i, j there is
an edge e. For each such edge e there is a check operator

Z
e

:= Z
i

Z
j

(1)

that will be measured to recover the error syndrome. En-
coded states are those for which Z

e

= 1, i.e. superposi-
tions of the states |0i⌦n and |1i⌦n, where n is the number
of physical qubits. Thus, this is just a repetition code.

An error syndrome can be identified with the collection
l of edges such that Z

e

= �1. If a number of qubits
are flipped in an encoded state, the resulting syndrome l
will be the boundary of the area corresponding to these
qubits, see Fig. 2. Not any collection of edges l can be
a syndrome: l has to be closed, i.e. an even number
of edges of l must meet at every vertex of the square
lattice. For every l there are two possible sets of qubits
that could be flipped to produce it. When correcting the
syndrome l, one must flip the qubits of one of these sets,
denoted l

+

. The complementary set of qubits is denoted
l�. An error that flips the set of qubits l� is undesirable:
correcting it produces a logical error.

For local noise of low enough intensity flipped qubits
will form small clusters. The resulting syndrome l will
thus be composed of small disconnected loops. In par-
ticular, if each qubit is flipped independently with prob-
ability �, a given set of edges s can be a subset of the
syndrome l with probability

p(s)  (2�)|s|, (2)

since for every edge in s there are two qubits that could
have been flipped. Thus loops are exponentially sup-
pressed as in the Ising model, and for � under a critical
value this e↵ect dominates over entropic fluctuations and
syndrome loops are confined.

B. Noisy error correction

Noiseless error correction aims to produce logical errors
with a probability that is as small as possible. For this
it su�ces to choose l

+

so that it coincides with the most
likely error for a given syndrome loop l. In noisy error
correction, however, the form of the unavoidable residual
noise is also important. For the present case, it should
be such that syndrome loops are confined if measurement
errors do not happen too often.

Suppose that check operators Z
e

are measured and
those at edges e belonging to a certain set w give the

FIG. 2: A quantum error-correcting code based on the 2D
Ising model. Qubits sit at faces and check operators at edges.
Three stages of error correction are depicted. (Top) When the
qubits in the shadowed area are flipped the check operators
on the boundary detect the change. (Left) Noisy measure-
ments of the syndrome are performed. Measurements fail at
some edges (red) providing a pseudo-syndrome (black) that
is not closed. The failed measurements are estimated to cor-
respond to a minimal set of edges with the same endpoints
(dotted red), so that the e↵ectively recovered syndrome is the
boundary of the shaded area. (Right) After error correction is
performed, the new syndrome corresponds to the set of edges
with e↵ectively wrong measurement outcome.

wrong eigenvalue. Instead of the correct syndrome l the
recovered pseudo-syndrome is l + w, with + the sym-
metric di↵erence of sets. This needs not be a proper
syndrome since it might not be closed, and therefore it
needs to be corrected. There exists some set of edges w

0

with minimal cardinality such that l + w + w
0

is closed.
Clearly w

0

only depends on w, because l + w + w
0

is
closed if and only if w+w

0

is. Since w+w = ; is closed
it follows that

|w
0

|  |w|. (3)

Estimating that w
0

is the set of wrong measurements
yields an e↵ective set of wrong measurements w0 and an
e↵ective syndrome l0

w0 := w + w
0

, l0 := l + w0. (4)

The situation is depicted in Fig. 2.
To explore the e↵ects of noisy measurements, assume

that the original error was l
+

, so that noiseless error cor-
rection would not introduce a logical error. In order to
correct the error syndrome l0 the qubits in l0

+

are flipped.
Therefore the net e↵ect of noise and correction is to flip
the set of physical qubits

l
+

+ l0
+

= w0
±, (5)

where the ± indicates the two di↵erent possibilities, see
Fig. 2. The minus sign corresponds to a logical error.

The set of e↵ective wrong measurements w0 is also the
syndrome of the residual error w0

±. Does local noise in
measurements give rise to confined syndrome loops? Sup-
pose that each measurement fails with probability ⌘. Ac-
cording to (3) more than half of the elements of w0 are
also in w. Since there are 2|w

0| subsets of w0, the probabil-
ity for w0 to be the syndrome is bounded by (2⌘1/2)|w

0|.
With a bit more of care one can show that for small
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this factor is stronger that entropy fluctuations and loops
are confined. This protects the classical bit because large
loops are required to flip its value.

It is possible to construct a quantum code based on
the Ising model. It will correct only bit-flip errors, but
this is enough to illustrate the role that confinement can
play in quantum error correction.

The construction is as follows. Physical qubits are
placed on the faces of a 2D square lattice, see Fig. 2.
As usual X

i

, Z
i

denote the X,Z Pauli operators on the
i-th qubit. Between any pair of adjacent faces i, j there is
an edge e. For each such edge e there is a check operator

Z
e

:= Z
i

Z
j

(1)

that will be measured to recover the error syndrome. En-
coded states are those for which Z

e

= 1, i.e. superposi-
tions of the states |0i⌦n and |1i⌦n, where n is the number
of physical qubits. Thus, this is just a repetition code.

An error syndrome can be identified with the collection
l of edges such that Z

e

= �1. If a number of qubits
are flipped in an encoded state, the resulting syndrome l
will be the boundary of the area corresponding to these
qubits, see Fig. 2. Not any collection of edges l can be
a syndrome: l has to be closed, i.e. an even number
of edges of l must meet at every vertex of the square
lattice. For every l there are two possible sets of qubits
that could be flipped to produce it. When correcting the
syndrome l, one must flip the qubits of one of these sets,
denoted l

+

. The complementary set of qubits is denoted
l�. An error that flips the set of qubits l� is undesirable:
correcting it produces a logical error.

For local noise of low enough intensity flipped qubits
will form small clusters. The resulting syndrome l will
thus be composed of small disconnected loops. In par-
ticular, if each qubit is flipped independently with prob-
ability �, a given set of edges s can be a subset of the
syndrome l with probability

p(s)  (2�)|s|, (2)

since for every edge in s there are two qubits that could
have been flipped. Thus loops are exponentially sup-
pressed as in the Ising model, and for � under a critical
value this e↵ect dominates over entropic fluctuations and
syndrome loops are confined.

B. Noisy error correction

Noiseless error correction aims to produce logical errors
with a probability that is as small as possible. For this
it su�ces to choose l

+

so that it coincides with the most
likely error for a given syndrome loop l. In noisy error
correction, however, the form of the unavoidable residual
noise is also important. For the present case, it should
be such that syndrome loops are confined if measurement
errors do not happen too often.

Suppose that check operators Z
e

are measured and
those at edges e belonging to a certain set w give the

FIG. 2: A quantum error-correcting code based on the 2D
Ising model. Qubits sit at faces and check operators at edges.
Three stages of error correction are depicted. (Top) When the
qubits in the shadowed area are flipped the check operators
on the boundary detect the change. (Left) Noisy measure-
ments of the syndrome are performed. Measurements fail at
some edges (red) providing a pseudo-syndrome (black) that
is not closed. The failed measurements are estimated to cor-
respond to a minimal set of edges with the same endpoints
(dotted red), so that the e↵ectively recovered syndrome is the
boundary of the shaded area. (Right) After error correction is
performed, the new syndrome corresponds to the set of edges
with e↵ectively wrong measurement outcome.

wrong eigenvalue. Instead of the correct syndrome l the
recovered pseudo-syndrome is l + w, with + the sym-
metric di↵erence of sets. This needs not be a proper
syndrome since it might not be closed, and therefore it
needs to be corrected. There exists some set of edges w

0

with minimal cardinality such that l + w + w
0

is closed.
Clearly w

0

only depends on w, because l + w + w
0

is
closed if and only if w+w

0

is. Since w+w = ; is closed
it follows that

|w
0

|  |w|. (3)

Estimating that w
0

is the set of wrong measurements
yields an e↵ective set of wrong measurements w0 and an
e↵ective syndrome l0

w0 := w + w
0

, l0 := l + w0. (4)

The situation is depicted in Fig. 2.
To explore the e↵ects of noisy measurements, assume

that the original error was l
+

, so that noiseless error cor-
rection would not introduce a logical error. In order to
correct the error syndrome l0 the qubits in l0

+

are flipped.
Therefore the net e↵ect of noise and correction is to flip
the set of physical qubits

l
+

+ l0
+

= w0
±, (5)

where the ± indicates the two di↵erent possibilities, see
Fig. 2. The minus sign corresponds to a logical error.

The set of e↵ective wrong measurements w0 is also the
syndrome of the residual error w0

±. Does local noise in
measurements give rise to confined syndrome loops? Sup-
pose that each measurement fails with probability ⌘. Ac-
cording to (3) more than half of the elements of w0 are
also in w. Since there are 2|w

0| subsets of w0, the probabil-
ity for w0 to be the syndrome is bounded by (2⌘1/2)|w

0|.
With a bit more of care one can show that for small
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this factor is stronger that entropy fluctuations and loops
are confined. This protects the classical bit because large
loops are required to flip its value.

It is possible to construct a quantum code based on
the Ising model. It will correct only bit-flip errors, but
this is enough to illustrate the role that confinement can
play in quantum error correction.

The construction is as follows. Physical qubits are
placed on the faces of a 2D square lattice, see Fig. 2.
As usual X

i

, Z
i

denote the X,Z Pauli operators on the
i-th qubit. Between any pair of adjacent faces i, j there is
an edge e. For each such edge e there is a check operator

Z
e

:= Z
i

Z
j

(1)

that will be measured to recover the error syndrome. En-
coded states are those for which Z

e

= 1, i.e. superposi-
tions of the states |0i⌦n and |1i⌦n, where n is the number
of physical qubits. Thus, this is just a repetition code.

An error syndrome can be identified with the collection
l of edges such that Z

e

= �1. If a number of qubits
are flipped in an encoded state, the resulting syndrome l
will be the boundary of the area corresponding to these
qubits, see Fig. 2. Not any collection of edges l can be
a syndrome: l has to be closed, i.e. an even number
of edges of l must meet at every vertex of the square
lattice. For every l there are two possible sets of qubits
that could be flipped to produce it. When correcting the
syndrome l, one must flip the qubits of one of these sets,
denoted l

+

. The complementary set of qubits is denoted
l�. An error that flips the set of qubits l� is undesirable:
correcting it produces a logical error.

For local noise of low enough intensity flipped qubits
will form small clusters. The resulting syndrome l will
thus be composed of small disconnected loops. In par-
ticular, if each qubit is flipped independently with prob-
ability �, a given set of edges s can be a subset of the
syndrome l with probability

p(s)  (2�)|s|, (2)

since for every edge in s there are two qubits that could
have been flipped. Thus loops are exponentially sup-
pressed as in the Ising model, and for � under a critical
value this e↵ect dominates over entropic fluctuations and
syndrome loops are confined.

B. Noisy error correction

Noiseless error correction aims to produce logical errors
with a probability that is as small as possible. For this
it su�ces to choose l

+

so that it coincides with the most
likely error for a given syndrome loop l. In noisy error
correction, however, the form of the unavoidable residual
noise is also important. For the present case, it should
be such that syndrome loops are confined if measurement
errors do not happen too often.

Suppose that check operators Z
e

are measured and
those at edges e belonging to a certain set w give the

FIG. 2: A quantum error-correcting code based on the 2D
Ising model. Qubits sit at faces and check operators at edges.
Three stages of error correction are depicted. (Top) When the
qubits in the shadowed area are flipped the check operators
on the boundary detect the change. (Left) Noisy measure-
ments of the syndrome are performed. Measurements fail at
some edges (red) providing a pseudo-syndrome (black) that
is not closed. The failed measurements are estimated to cor-
respond to a minimal set of edges with the same endpoints
(dotted red), so that the e↵ectively recovered syndrome is the
boundary of the shaded area. (Right) After error correction is
performed, the new syndrome corresponds to the set of edges
with e↵ectively wrong measurement outcome.

wrong eigenvalue. Instead of the correct syndrome l the
recovered pseudo-syndrome is l + w, with + the sym-
metric di↵erence of sets. This needs not be a proper
syndrome since it might not be closed, and therefore it
needs to be corrected. There exists some set of edges w

0

with minimal cardinality such that l + w + w
0

is closed.
Clearly w

0

only depends on w, because l + w + w
0

is
closed if and only if w+w

0

is. Since w+w = ; is closed
it follows that
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|  |w|. (3)

Estimating that w
0

is the set of wrong measurements
yields an e↵ective set of wrong measurements w0 and an
e↵ective syndrome l0

w0 := w + w
0

, l0 := l + w0. (4)

The situation is depicted in Fig. 2.
To explore the e↵ects of noisy measurements, assume

that the original error was l
+

, so that noiseless error cor-
rection would not introduce a logical error. In order to
correct the error syndrome l0 the qubits in l0

+

are flipped.
Therefore the net e↵ect of noise and correction is to flip
the set of physical qubits

l
+

+ l0
+

= w0
±, (5)

where the ± indicates the two di↵erent possibilities, see
Fig. 2. The minus sign corresponds to a logical error.

The set of e↵ective wrong measurements w0 is also the
syndrome of the residual error w0

±. Does local noise in
measurements give rise to confined syndrome loops? Sup-
pose that each measurement fails with probability ⌘. Ac-
cording to (3) more than half of the elements of w0 are
also in w. Since there are 2|w

0| subsets of w0, the probabil-
ity for w0 to be the syndrome is bounded by (2⌘1/2)|w

0|.
With a bit more of care one can show that for small
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enough ⌘ the probability that a set of edges r is a subset
of w0 is

p(r)  �|r|, (6)

for some � that goes to zero when ⌘ does, see section IV.
Thus indeed residual syndrome loops are confined.

An interesting way to choose the correcting set l
+

for
each l is to correct each connected component of l sepa-
rately [9], so that localized loops are corrected by flipping
a localized set of qubits. This choice makes it easy to un-
derstand that logical errors are unlikely when both the
original error syndrome l and the measurement error w0

are confined in the sense discussed. Indeed, the edges
in the union of l and l0 will form clusters, and (5) can
be applied separately to each of them. If these clusters
are small compared to the lattice, the set l

+

+ l0
+

is lo-
calized and has to be w0

+

. Logical errors due to noisy
measurements will only happen when the clusters are
large compared to the system size, and the probability
for such events decreases exponentially with the lattice
size as long as confinement is strong enough.

C. Spatial dimension

For D = 1 spatial dimensions the Ising model fails to
have a finite critical temperature. The excitations are
punctual and can move freely without any energy cost:
they are unconfined. These behavior is mimicked by the
corresponding 1D repetition code. Local noise will still
give rise to confined syndrome points, in the sense that
each connected chain of errors produces two endpoints
that are unlikely to be far apart. But each wrong check
operator measurement will give rise to an isolated syn-
drome point, and thus there is no confinement.

The situation is somewhat similar when quantum self-
correcting systems are considered. However, for known
systems the spatial dimension needs to be at least four,
instead of two. Again the mechanism for confinement
involves that all excitations should be extended objects.
This translates nicely when moving to active error cor-
rection. In particular, again one finds that confinement
gives rise to single-shot error-correction.

D. Charge confinement in 3D codes

Surprisingly, with subsystem codes it is possible to re-
produce in D = 3 spatial dimensions the phenomena of
confinement. More precisely, it will be proved below that
this is possible at the level of noisy error correction.

The codes that turn out to show this behavior are 3D
gauge color codes [7]. As in the 1D repetition code, errors
can be visualized as strings and syndromes as the end-
points of these strings, all living in a 3D lattice. Direct
extraction of the error syndrome provides no confinement
but, instead, it is possible to perform a collection of local

FIG. 3: Two stages in the recovery of the error syndrome.
(Top) The measurements of the gauge generators provides a
noisy gauge syndrome that does not satisfy color flux conser-
vation at the points marked with a two-colored circle. (Bot-
tom) The gauge syndrome is corrected by adding suitable
edges. The error syndrome is the set of branching points of
the flux net (colored circles).

measurements involving the gauge degrees of freedom.
The resulting gauge syndrome is composed of extended
objects similar to the closed strings in the 2D repetition
code, and noisy measurements will display confinement.
The position of the error syndrome points is linked to
that of the extended objects, and thus they inherit the
confinement.
Details are as follows. The lattice has vertices with four

di↵erent colors: red, green blue and yellow (r, g, b, y).
These are connected through edges that have two colors,
namely those complementary to the colors of the two
vertices linked by the edge, which have to be di↵erent.
E.g. an rg-edge connects a b-vertex and a y-vertex. The
error syndrome consists of a collection of vertices. The
gauge syndrome consists of a collection of edges that has
to be closed in the following sense. The subset of edges
on the gauge syndrome with a given color on them has
to be closed, i.e. composed of loops. In other words,
color flux is conserved. This allows to repair noisy gauge
syndromes, as illustrated in Fig. 3.
The error syndrome vertices can be recovered from the

gauge syndrome edge collection because a vertex is in the
error syndrome if and only if an odd number of gauge
syndrome edges of any color is incident on it. E.g. if
an odd number of gauge syndrome rg-edges meet at b-
vertex, then it is an error syndrome vertex (and then
necessarily and odd number of ry-edges, or of yg-edges,
must meet at the vertex to preserve the color flux). As
depicted in Fig. 3, the idea is that error syndrome vertices
correspond to branching points of the gauge syndrome
flux lines.
Since gauge degrees of freedom are not protected in

any way, the gauge syndrome is a priori random, except
for the constraints imposed by the relationship to the
error syndrome. Thus the gauge syndrome loops are not
confined at all, but this is immaterial. As in the 2D

faulty gauge syndrome: endpoints = syndrome of faults 

repaired gauge syndrome: branching points = syndrome 



•  the gauge syndrome is unconfined, 
it is random except for the fixed 
branching points 

•  the (effective) wrong part of the 
gauge syndrome is confined 

•  each connected component has 
branching points with neutral 
charge (i.e. locally correctable). 
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FIG. 4: The set of edges with an e↵ectively wrong measure-
ment constitute a gauge syndrome. If noise in measurements
is below a threshold, this gauge syndrome is composed of
small clusters. Each cluster contributes branching points that
are thus close to each other. Moreover, they have overall neu-
tral charge, i.e. there exists a local error with such a syn-
drome. This is the origin of confinement.

repetition code, there will be a set w of edges that gave
the wrong measurement, and a minimal w

0

such that
w0 = w + w

0

is closed. It is the e↵ective set of wrong
measurements w0 that displays confinement, and this is
what matters. Let the correct error syndrome be v, a
collection of vertices. Instead the recovered syndrome
is v + v0, with v0 the branching points of w0. If w0 is
confined it will typically consists of small clusters, each
with a collection of branching points that are also thus
clustered, see Fig. 4. This is how the error syndrome
inherits confinement.

It is possible to attach a charge to the branching
points [10]. Under this perspective each connected com-
ponent of w0 gives rise to a collection of charges with
neutral total charge. In other words, the charge is con-
fined.

The error correction just described must be performed
twice, one for X errors and the other for Z errors. The
two cannot be unified in the sense that the gauge op-
erators to be measured do not commute. Also for this
reason it is not possible to upgrade the gauge syndrome
to an error syndrome. This would work only for X or Z
errors, and confinement would be lost for the other type
of errors.

III. MODELS

This section deals with the modeling of fault-tolerant
quantum error correction. The focus will be on simplicity,
but keeping the models interesting enough so that the
results are compelling.

A. Framework

Strictly speaking fault-tolerant quantum computing re-
quires studying the computation process as a whole. In

order to isolate the error correction stage, however, here
the focus will be on noisy channels, in particular classes
(sets) of channels where noise satisfies certain criteria.
Given classes of channels A and B their composition is

A �B := {A � B |A 2 A,B 2 B}, (7)

and similarly for the composition A � E or E � A with
some channel or operation E .
The noise that accumulates in a computation will be

represented by a class of channels N
⌧,✏

that follows the
line of reasoning of section II: ⌧ is intended to play the
role of a ‘temperature’ that indicates how much the er-
ror syndrome is confined, and ✏ indicates how bad log-
ical errors can be. Similarly noisy error correction will
be represented by a class of channels R

⌘

with a noise
parameter ⌘. Let C be the map that projects onto the
code subspace. The goal will be to show that for certain
quantum-local approaches, under suitable conditions

R
⌘

�N
⌧,✏

� C ✓ N
⌧

0
,✏+�

� C, (8)

in such a way that (i) the residual temperature ⌧ 0 can
be made as small as desired solely by reducing the noise
in the recovery operation R

⌘

and (ii) the increment � in
logical noise can be made as small as desired solely by
increasing the system size. Thus error correction aims
to ‘refrigerate’ the system while introducing arbitrarily
little logical noise.

B. Stabilizer codes

In operator quantum error-correction [11], quantum in-
formation is stored in a subsystem B of a code subspace

C = A⌦B (9)

of the Hilbert space H representing the noisy system.
Thus A represents gauge degrees of freedom. When A is
trivial, the code is a conventional subspace code.

Stabilizer codes [12] are defined in systems composed of
a number of physical qubits. The subspace C is defined
in terms of a stabilizer S, a subgroup of the Pauli group
P with �1 62 S. In particular C is the subspace with
projector

P =
Y

s2S

1 + s

2
. (10)

A gauge group G ✓ P with S as its center (up to phases)
fixes the decomposition C = A ⌦ B [13]. The elements
of G generate the full algebra of operators on the gauge
subsystem A, and act trivially on the logical subsystem
B. The elements of the group Z(G), the centralizer of
G in P, generate the full algebra on B. They are called
bare logical operators, as opposed to the dressed logical

operators in Z(S), which might involve a nontrivial ac-
tion in A. The elements of Z(S) � G produce a logical

confinement in 3D 

•  branching points exhibit charge confinement! 
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•  there is an X and a Z gauge syndrome 

•  any of them can be fixed to become part of the 
stabilizer, but not both! 

•  each option corresponds to a conventional 3D 
color code 
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summary & future work

•  color codes have optimal transversal gates 

•  universality via gauge fixing 

•  single-shot error correction is possible and is 
linked to self-correction 

•  3D-local FTQC with constant time overhead 

•  what are the limitations in 2D? 

•  what about non-geometrical locality? 

•  related 3D self-correcting systems? 
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