

outline

- introduction
- locality in fault-tolerant quantum comp.
- topological codes \& local operations
- results
- single-shot error correction
- self-correction
- gauge color codes
- universality via gauge-fixing

error correction

For quantum computation...

- want: isolation + control
- have: decoherence + imprecision
- need: error correction
- how: one qubit encoded in many
O
logical qubit

$\bigcirc \bigcirc \bigcirc \bigcirc$
physical qubits

error correction

- extra degrees of freedom detect errors
- check operators fix the code subspace
- measuring them gives the error syndrome
- to correct, guess error from syndrome

logical qubit

,

locality

- correction is possible if errors are not arbitrary
- local errors are more likely
- phenomenology: local stochastic noise
$P\left(\right.$ error affects qubits $\left.i_{1}, i_{2}, \ldots, i_{n}\right) \leq \varepsilon^{n}$
$\bigcirc \sin ^{4} \bigcirc \bigcirc \bigcirc$
more likely

less likely

fault-tolerant QC

- compute with encoded qubits
- errors pile up, but error correction flushes them away (up to a point)
- logical operations should preserve locality!

transversal operations

- act separately on physical subsystems
- do not spread errors
- downside: never universal Eastin \& Knill ©9

\dagger

transversal operations

- act separately on physical subsystems
- do not spread errors
- downside: never universal Eastin \& Knill ©9

local operations

- finite depth circuit
- limited spread of errors
- in some contexts, limited power Bravyi \& König '09....

1

local operations

- finite depth circuit
- limited spread of errors
- in some contexts, limited power Bravyi \& König '09,...

1

quantum-local operations

- finite depth circuit + global classical comp.
- universal operations + error correction no limits!

quantum-local operations

- finite depth circuit + global classical comp.
- universal operations + error correction nolimits!

Caution!

outline

- introduction
- locality in FTQC
- topological codes \& local operations
- results
- single-shot error correction
- self-correction
- gauge color codes
- universality via gauge-fixing

topological codes ${ }_{\text {Kitaev' } 97}$

- physical qubits on a lattice
- local check operators
- 'local' operators cannot harm logical qubits

topological codes
 Kitaev '97

topological order

- gapped (local) quantum Hamiltonian
- locally undistinguishable ground states
- robust against deformations

$$
\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 &
\end{array} \quad H=-J \sum_{i} P_{i}
$$

self-correction

- for $\mathrm{D} \geq 4$ excitations can be extended objects

local operations

- geometrically local, finite depth circuit
- finite spatial spread of errors

Dimensional restrictions

Bravyi \& König '13

- top. stabilizer codes: check ops in Pauli group
- geometrical constraints on local gates

$$
\mathcal{P}_{D}:=\left\{U \mid U \mathcal{P} U^{\dagger} \subseteq \mathcal{P}_{D-1}\right\}, \quad \mathcal{P}_{1}:=\mathcal{P}
$$

$$
R_{D}:=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array} e^{2 \pi i / 2^{D}}\right)
$$

outline

- introduction
- locality in FTQC
- topological codes \& local operations
- results
- single-shot error correction
- self-correction
- gauge color codes
- universality via gauge-fixing

color codes

- topological stabilizer codes defined for any D
- optimal transversal gates: R_{D} transversal

Clifford group

$\mathrm{CNOT}+\mathrm{T}$

subsystem codes

Poulin '05

- gauge (free) degrees of freedom
- in topological codes, can be local
- more local measurements
- gauge fixing: gauge ops \rightarrow check ops

Paetznick \& Reichardt ‘ 13

- amounts to error correction
- allows to combine properties of codes (e.g. transversal gates for universality)

3D gauge color codes

- 6-local measurements, as in 2D
- universal transversal gates via gauge fixing

3D gauge color codes ${ }^{\text {bonus! }}$

- dimensional jumps via gauge fixing
- 2D color codes require much less qubits

quantum-local error correction

- in topological stabilizer codes ideal error correction is q-local
- but real measurements are noisy, and multiple rounds are required (to avoid large errors)

quantum-local error correction

- some codes are inherently robust!
- local measurement errors yield local errors
- single-shot error correction (no multiple rounds)
- linked to self-correction: confinement

quantum-local error correction

- 3D gauge color codes are single-shot!
- confinement due to gauge 'redundancy'
- also single-shot gauge-fixing

3D-local constant time QC

- fault-tolerant QC in 3D qubit lattice
- local quantum ops + global classical comp.
- constant time ops. (disregarding efficient CC)

outline

- introduction
- locality in FTQC
- topological codes \& local operations
- results
- single-shot error correction
- self-correction
- gauge color codes
- universality via gauge-fixing

Ising model

- simplest (classical) self-correction
- critical temperature T_{C} if $D>1$
- below $T_{C} \rightarrow$ confined loops
- stable bit (exponential lifetime)

repetition code à la Ising

- stabilizer code for bit-flip errors
- qubits = faces
- check operators = edges

$$
Z_{e}:=Z_{i} Z_{j}
$$

- syndrome composed of loops
- low local noise \rightarrow confined loops

noisy error correction

- assume noisy measurements only
- goal: confined residual loops

noisy error correction

effective wrong measurements = residual syndrome

spatial dimension

- 1D Ising / repetition code: unconfined excitations / syndrome

- confinement mechanism: extended excitations
- full quantum self-correction seems to require $D>3$

outline

- introduction
- locality in FTQC
- topological codes \& local operations
- results
- single-shot error correction
- self-correction
- gauge color codes
- universality via gauge-fixing

confinement in 3D

- 3D gauge color codes:
- errors: string-net like
- syndrome: endpoints
- conserved color charge
- direct measurement of syndrome: no confinement
- instead, obtain it from gauge syndrome
- another application of subsystem codes!

confinement in 3D

σ
0

faulty gauge syndrome: endpoints = syndrome of faults

repaired gauge syndrome: branching points = syndrome

confinement in 3D

- the gauge syndrome is unconfined, it is random except for the fixed branching points
- the (effective) wrong part of the gauge syndrome is confined

- each connected component has branching points with neutral charge (i.e. locally correctable).
- branching points exhibit charge confinement!

outline

- introduction
- locality in FTQC
- topological codes \& local operations
- results
- single-shot error correction
- self-correction
- gauge color codes
- universality via gauge-fixing

gauge fixing

- there is an X and $a Z$ gauge syndrome
- any of them can be fixed to become part of the stabilizer, but not both!
- each option corresponds to a conventional 3D color code

gauge fixing

syndrome

 geometryfixed $Z \quad$ fixed $X \quad$ self-dual

X check ops

Z check ops

Homological
?

summary \& future work

- color codes have optimal transversal gates
- universality via gauge fixing
- single-shot error correction is possible and is linked to self-correction
- 3D-local FTQC with constant time overhead
- what are the limitations in 2D?
- what about non-geometrical locality?
- related 3D self-correcting systems?

New Ql group in COPENHAGEN!

Wanted:
Phd students $\&$ postdocs

Masterclass on quantom mathemafics

 May 18-22 2015Michael Freedman, Bruno Nachtergaele, Robert Seiringer, Spiros Michalakis, and more
http://www.math.ku.dk/english/research/conferences/2015/qmath-masterclass/

